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1. INTRODUCTION

Consider polynomials jnðzÞ ¼ anzn þ 	 	 	 ; an > 0 orthogonal on the unit
circle with respect to some measure sðyÞ which has infinitely many growth
points [2]. This means

1

2p

Z p

�p
jnðzÞjmðzÞ dsðyÞ ¼ dnm;

where z ¼ eiy: Define FnðzÞ ¼
jnðzÞ
an

: Then FnðzÞ satisfies the system of
difference equations

Fnþ1ðzÞ ¼ zFnðzÞ � %aanFn
nðzÞ; F0ðzÞ ¼ 1;

Fn
nþ1ðzÞ ¼ Fn

nðzÞ � anzFnðzÞ; Fn
0ðzÞ ¼ 1;

(
ð1Þ

where the reverse polynomials are defined as

Fn

nðzÞ ¼ zn %FFðz�1Þ: ð2Þ

The coefficients an are called reflection (or Geronimus) parameters. It is not
difficult to show that janj51 for all n ¼ 0; 1; . . . (see [2]). Consider any
42
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PROBABILITY MEASURES WITH REFLECTION COEFFICIENTS 43
measure mðyÞ on ½�p;p�: Assume that it has non-trivial absolutely
continuous component macðyÞ: We say that the essential support of mac is
the whole interval ½�p; p� if for any measurable subset C with positive
Lebesgue measure (jCj > 0), we have the inequality mðCÞ > 0: Measures that
satisfy this condition are often called the Erd +oos measures [5]. In [2], the
following theorem was proved. We give its short version here.

Theorem 1.1 (Geronimus [2]). The following statements are equivalent:

ðaÞ The function ln s0 is integrable. That is

Z p

�p
ln s0ðyÞ dy > �1: ð3Þ

ðbÞ The series
P1

n¼0 janj
2 converges.

ðcÞ There exists a subsequence jn
nn ðzÞ bounded at least at one point inside

the unit disk.

Remark. It was also proved that if one of the conditions above holds,
then the limit limn!1jn

nðzÞ ¼ pðzÞ exists. The convergence is uniform
inside any disk jzj4r51: Function pðzÞ is analytic and has no zeroes inside
the unit disk. What is more, the following representation holds (formula
(2.5) in [2]):

pðzÞ ¼ exp �
1

4p

Z p

�p

eiy þ z
eiy � z

ln s0ðyÞ dy
� �

; jzj51: ð4Þ

Assume that we are given a sequence of coefficients an: The following
theorem is true.

Theorem 1.2 (Geronimus [2]). An arbitrary choice of parameters an
subjected to the single condition

janj51 ðn ¼ 0; 1; . . .Þ

determines the entire orthogonal set FnðzÞ and the non-decreasing bounded

function sðyÞ with infinitely many growth points.

We are interested in the following question. What properties of fang
provide the inclusion of s in the Erd +oos class? It follows from Theorem 1.1
that s is an Erd +oos measure, if fang 2 ‘2 and janj51;¼ 0; 1; . . . : Similar
results for different classes of parameters fang were obtained in [6, 7]. The
subordinacy theory of [3] can also be effectively applied to this problem. In
the present paper, we use a new approach. For a class of sequences fang; we
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first establish an asymptotic formula for the polynomials jn
nðzÞ for z from

some real segment centered at zero. Then, we show that the asymptotics
obtained guarantees the inclusion of s into the Erd +oos class.

2. ASYMPTOTICS OF jn
nðzÞ

In this paragraph, we obtain asymptotics of jn
nðzÞ and Fn

nðzÞ: Note that [2,
Formula (8.6)]

a2
0

a2
n
¼
Yn�1

k¼0

f1 � jak j2g: ð5Þ

Since fang 2 ‘4; this implies that

an ¼ cn exp
1

2

Xn�1

k¼0

jak j
2

( )
;

where fcng is a convergent sequence. Consequently, the asymptotics for
Fn

nðzÞ gives the asymptotic formula for

jn

nðzÞ ¼ anFn

nðzÞ: ð6Þ

If z ¼ 0; then the solution to the second equation of (1) is trivial, i.e., Fn
nð0Þ

¼ 1; n ¼ 0; 1; . . . ; and we obtain the asymptotics for jn
nð0Þ from (6). In what

follows, we assume therefore that z=0: Before stating the main result, we
prove some auxiliary statements.

Lemma 2.1. Let limn!1 an ¼ 0 and fanþ1 � ang 2 ‘2: Then, the series

X1
j¼0

½Rð %aajajþ1Þ � jajj
2� ð7Þ

converges.

Proof. Observing that

jajþ1 � ajj2 ¼ jajþ1j2 þ jajj2 � 2Rð %aajajþ1Þ

and taking the sum of these identities, we obtain

Xn
j¼0

jajþ1 � ajj2 ¼
Xn
j¼0

jajþ1j2 þ jajj2 � 2Rð %aajajþ1Þ:
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It follows that

2
Xn
j¼0

½Rð %aajajþ1Þ � jajj2� ¼ janþ1j2 � ja0j2 �
Xn
j¼0

jajþ1 � ajj2: ]

Lemma 2.2. Let fFnðzÞg be the sequence of the monic orthogonal

polynomials corresponding to a sequence of the Geronimus parameters

fangn50: Then,

Fn

nðzÞ ¼ 1 � z
Xn�1

j¼0

ajFjðzÞ; ð8Þ

FnðzÞ ¼ zn � zn�1
Xn�1

j¼0

%aajz�jFn

j ðzÞ; ð9Þ

Fn

nðzÞ ¼ 1 �
Xn�1

j¼0

ajzjþ1 þ
Xn�1

j¼1

ajzj
Xj�1

l¼0

%aalz�lFn

l ðzÞ; ð10Þ

Fn

nðzÞ ¼ 1 �
Xn�1

j¼0

ajzjþ1 þ
Xn�2

j¼0

Fn

j ðzÞ
Xn�1

l¼jþ1

%aajalzl�j; n ¼ 1; 2; . . . : ð11Þ

Proof. Formula (8) follows from the second recurrence of (1):

Fn

nðzÞ ¼Fn

0ðzÞ þ Fn

1ðzÞ � Fn

0ðzÞ þ Fn

2ðzÞ � Fn

1ðzÞ þ 	 	 	 þ Fn

nðzÞ � Fn

n�1ðzÞ

¼ 1 � z
Xn�1

k¼0

akFkðzÞ:

Now (9) can be obtained from (8) by the *-operation defined in (2). Finally,
(10) follows from (8) if we substitute (9) into it. Formula (11) is obtained
from (10) by the change of the order of summation. ]

Denote

rn ¼ 1 �
Xn�1

j¼0

ajzjþ1;

gn ¼ %aanz�n
X1
j¼nþ1

ajzj;

ln ¼ �gn�1Fn

n�1ðzÞ �
Xn�2

l¼0

%aalz�lFn

l ðzÞ

 ! X1
j¼n

ajzj
 !

:
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In the next lemma, we obtain some useful formulas for Fn
nðzÞ:

Lemma 2.3. The following relations for Fn
nðzÞ holds:

Fn

nðzÞ ¼ rn þ ln þ
Xn�1

l¼0

glFn

l ðzÞ; ð12Þ

Fn

nþ1 � Fn

n ¼ rnþ1 � rn þ lnþ1 � ln þ gnFn

n : ð13Þ

Proof. Equation (12) follows from (11) if we use notations rn; ln; and gn:
Equation (13) is the direct consequence of (12). ]

Definition. For a sequence of complex numbers, we define

jjfxngjj1 ¼ sup
n50

jxnj:

More generally, for any real positive p; we denote

jjfxngjjp ¼
X1
n¼0

jxnj
p

 !1=p

:

The following two lemmas establish some properties of the sequence fgng:

Lemma 2.4. The estimates

jjfgngjj14jjfangjj
2
1

jzj
1 � jzj

; ð14Þ

jjfgngjj24jjfangjj24
jzj

1 � jzj
ð15Þ

hold.

Proof. Inequality (14) easily follows from the definition of gn: To prove
(15), use Cauchy’s inequality first,

jjfgngjj24jjfangjj4
X1
j¼nþ1

ajzj�n

( )�����
�����

�����
�����
4

:
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The discrete version of Young’s inequality for the convolution [4, pp. 239–
240] states

X1
j¼�1

xjyn�j

( )�����
�����

�����
�����
p

4jjfxngjjp jjfyngjj1; p51: ð16Þ

Applying Young’s inequality to

xj ¼
aj if j50;

0 if j50:

(
and yj ¼

z�j if j50;

0 if j50

(

with p ¼ 4; we obtain that

X1
j¼nþ1

ajzj�n

( )�����
�����

�����
�����
4

4jjfangjj4jjfz
ngn51jj1 ¼

jzj
1 � jzj

jjfangjj4: ]

We denote by C a positive constant whose value may change from one
formula to another.

Lemma 2.5. The following asymptotics is true:

Xn
j¼0

Rgj ¼
z

1 � z

Xn
j¼0

jajj2 þ onðzÞ; ð17Þ

where onðzÞ tends to some o1ðzÞ uniformly for real z ¼ x from some punctured

vicinity of zero.

Proof. The trivial identity xk ¼ ðxkþ1 � xkÞ=ðx� 1Þ and the definition of
gn imply

Xn
j¼0

gj ¼
Xn
j¼0

%aajx�j
X1
k¼jþ1

ak
xkþ1 � xk

x� 1

 !
:

Using the Abel transform, we have

Xn
j¼0

gj ¼
x

1 � x

Xn
j¼0

%aajajþ1 þ
1

x� 1

Xn
j¼0

%aajx�j
X1
k¼jþ2

ðak�1 � akÞxk :

Since fang 2 ‘4 implies that limn!1 an ¼ 0; we obtain by Lemma 2.1
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that

x
1 � x

Xn
j¼0

R %aajajþ1

� 

¼
x

1 � x

Xn
j¼0

jajj2 þ
x

1 � x

Xn
j¼0

½Rð %aajajþ1Þ � jajj2�

¼
x

1 � x

Xn
j¼0

jajj
2 �

x
2ð1 � xÞ

ja0j
2 þ

X1
j¼0

jajþ1 � ajj
2

 !
þ

x
1 � x

%ooð1Þ:

To handle the second term, we use the elementary identity x�j ¼
ðx�jþ1 � x�jÞ=ðx� 1Þ: Now, we write

Xn
j¼0

%aaj
x�ðj�1Þ � x�j

x� 1

X1
k¼jþ2

ðak�1 � akÞxk

¼
Xn
j¼0

%aaj
x�ðj�1Þ

x� 1

X1
k¼jþ2

ðak�1 � akÞxk �
Xnþ1

j¼1

%aaj�1
x�ðj�1Þ

x� 1

X1
k¼jþ1

ðak�1 � akÞxk

¼
1

x� 1

Xn
j¼1

x�ðj�1Þ %aaj

X1
k¼jþ2

ðak�1 � akÞxk � %aaj�1

X1
k¼jþ1

ðak�1 � akÞxk
" #

þ %aa0
x

x� 1

X1
k¼2

ðak�1 � akÞxk � %aan
x�n

x� 1

X1
k¼nþ2

ðak�1 � akÞxk : ð18Þ

The last term of (18) tends to zero uniformly on compact subsets of ð�1; 1Þ;
since limn!1 an ¼ 0 and since the Taylor coefficients of the power series in
this term are in ‘4: Similarly, the Taylor series of the second term in (18)
converges uniformly on the compact subsets of ð�1; 1Þ: The first term in (18)
can be written as follows:

x
x� 1

Xn
j¼1

x�jð %aaj � %aaj�1Þ
X1
k¼jþ2

ðak�1 � akÞxk �
x2

x� 1

Xn
j¼1

%aaj�1ðaj � ajþ1Þ: ð19Þ

Apply Cauchy’s inequality

Xn
j¼1

jxjj jyjj4
Xn
j¼1

jxjj
2

 !1=2 Xn
j¼1

jyjj
2

 !1=2

;

with xj ¼ %aaj � %aaj�1 and yj ¼ x�jP1
k¼jþ2 ðak�1 � akÞxk ; to the first term in

(19). xj 2 ‘2 and yj 2 ‘2 by discrete Young’s inequality. Therefore, the first
term of (19) converges uniformly near the origin. For the second one, we
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have

Xn
j¼1

ðaj�ajþ1Þð %aaj�1� %aaj þ %aajÞ ¼
Xn
j¼1

ðaj�ajþ1Þð %aaj�1� %aajÞ þ
Xn
j¼1

ðaj�ajþ1Þ %aaj:

The first series converges by Cauchy’s inequality. The real part of the second
one converges by Lemma 2.1. ]

Consider

Sn ¼
Yn�1

j¼0

ðgj þ 1Þ ð20Þ

for real z ¼ x from the small punctured vicinity of zero. Sn is the solution of
the equation Snþ1 � Sn ¼ Sngn; S0 ¼ 1: The next lemma establishes the
asymptotics for jSnj:

Lemma 2.6. jSnj admits the following asymptotics:

jSnj ¼ exp
x

1 � x

Xn
j¼0

jajj
2

 !
nnðxÞ; ð21Þ

where nnðxÞ tends to some positive n1ðxÞ:

Proof. From (20), we infer

jSnj ¼ exp R
Xn�1

j¼0

lnð1 þ gjÞ

( )
:

Use the Taylor expansion for logarithm: lnð1 þ sÞ ¼ sþ Oðs2Þ as s ! 0:
Lemma 2.5 yields the asymptotics for

Pn�1
j¼0 Rgj: Boundedness of

Pn�1
j¼0 jgjj

2

follows from Lemma 2.4. ]

For Fn
n ; we have Eq. (12). Let us find Fn

n in the following form Fn
n ¼ SnDn:

Then, the study of the sequence Dn is reduced to the analysis of the equation
from the following lemma.

Lemma 2.7. We have the following equation for Dn:

Dn ¼ D2 þ
Xn�1

j¼2

rjþ1 � rj
Sjþ1

þ
ln
Sn

�
l2
S3

þ
Xn�1

j¼3

lj
1

Sj
�

1

Sjþ1

� �
ðn ¼ 2; 3; . . .Þ;

ð22Þ



SERGEY A. DENISOV50
where the formula for ln is

ln ¼ �gn�1Sn�1Dn�1 �
Xn�2

l¼0

%aalx�lSlDl

 ! X1
j¼n

ajxj
 !

: ð23Þ

Proof. Substituting the factorization Fn
n ¼ SnDn in (13) and using (20),

we obtain

Dnþ1 ¼ Dn þ
rnþ1 � rn þ lnþ1 � ln

Snþ1
:

Summing up these equations, we obtain (22) by the Abel transform. ]

Now we are in the position to prove the main result of this section.

Theorem 2.1. If the reflection parameters an are such that janj51; an 2
‘4; and anþ1 � an 2 ‘2; then we have the asymptotics

jjn

nðzÞj ¼ exp
1 þ z

2ð1 � zÞ

Xn�1

j¼0

jajj2
( )

knðzÞ; ð24Þ

where knðzÞ tends to some positive k1ðzÞ uniformly for real z ¼ x in some small

neighborhood of zero jxj5d:

Proof. Let us establish the following asymptotics for Fn
nðxÞ: If jxj5d;

then

jFn

nðxÞj ¼ exp
x

1 � x

Xn�1

j¼0

jajj
2

( )
wnðxÞ; ð25Þ

where wnðxÞ tends to some positive w1ðxÞ uniformly for real z ¼ x; ðjxj5dÞ;
and d is some small number that depends on jjfangjj4 and jjfanþ1 � angjj2:
Once this formula is obtained, we can use (6) to prove (24). Consider
Eq. (22). Subtract unity from the both sides of (22). Let us show that

max
j¼0;...;n

jDj � 1j4T1ðxÞ þ T2ðxÞ max
j¼0;...;n

jDj � 1j; ð26Þ

where T1ðxÞ; T2ðxÞ ! 0 as x ! 0: Indeed, estimate terms on the right-hand
side of (22). From Lemma 2.6, we have jSjþ1j > C > 0 for jxj small enough.
Therefore,

Xn�1

j¼2

rjþ1 � rj
Sjþ1

�����
�����4C

Xn�1

j¼2

jajj jxjjþ14Cjxj: ð27Þ
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For l2=S3;

l2
S3

����
����4Cjg1j jFn

1 j þ Cja0j jFn

0 j
X1
j¼2

jajj jxj
j4Cjxj; ð28Þ

because

jg1j4ja1j jxj�1
X1
j¼2

jajj jxjj4Cjxj:

The estimate on ln=Sn from the right-hand side of (22) is

ln
Sn

����
����4Cjgn�1j jDn�1j

þ C 1 þ max
l¼0;...;n�2

fjDl � 1jg
� �

jSnj�1
Xn�2

l¼0

jalj jxj�ljSlj

 ! X1
j¼n

jajj jxjj
 !

4Cjxj max
j5n

fjajjg 1 þ max
l¼0;...;n�2

fjDl � 1jg
� �

: ð29Þ

The difference in the last term from the right-hand side of (22) can be written
as follows:

1

Sj
�

1

Sjþ1
¼

gj
Sjþ1

:

Therefore, using formula (23) for lj; we get

Xn�1

j¼3

lj
1

Sj
�

1

Sjþ1

� ������
�����4A1 þ A2; ð30Þ

where

A1 ¼C 1 þ max
j¼2;...;n�2

fjDj�1 � 1jg
� �Xn�1

j¼3

jgj�1j jSj�1j
jgjj
jSjþ1j

4C 1 þ max
j¼2;...;n�2

fjDj�1 � 1jg
� �

jjfgngjj
2
2

4Cjxj2 1 þ max
j¼0;...;n

fjDj � 1jg
� �

: ð31Þ
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The last inequality follows from (15). For A2; we have

A2 ¼
Xn�1

j¼3

Xj�2

l¼0

%aalx�lSlDl

 ! X1
k¼j

akxk
 !

gj
Sjþ1

�����
�����

4C 1 þ max
j¼0;...;n�3

fjDj � 1jg
� �Xn�1

j¼3

Xj�2

l¼0

jalj jxj
�l

 ! X1
k¼j

jak j jxj
k

 !
jgjj

" #
:

Here we used the asymptotics of Sn established in Lemma 2.6. Apply the
generalized Cauchy’s inequality

X1
j¼3

jxjj jyjj jzjj4jjfxjgj53jj2jjfyjgj53jj4jjfzjgj53jj4;

with xj ¼ gj; yj ¼ xj
Pj�2

l¼0 jalj jxj
�l; zj ¼ x�jP1

k¼j jak j jxj
k : Now it suffices to

use discrete Young’s inequality for fyjg; fzjg; and (15) for fxjg to obtain the
estimate

A24Cjxj 1 þ max
j¼0;...;n

fjDj � 1jg
� �

: ð32Þ

Note that limx!0 D2ðxÞ ¼ 1: Let

T1ðxÞ ¼ jD2 � 1j þ
Xn�1

j¼2

rjþ1 � rj
Sjþ1

�����
�����þ l2

S3

����
����þ Cjxj max

j5n
jajj þ Cjxj

and

T2ðxÞ ¼ Cjxj max
j5n

jajj þ Cjxj:

From (27)–(32), we infer (26) with limx!0 T1ðxÞ ¼ 0; limx!0 T2ðxÞ ¼ 0: The
following estimate holds:

max
j¼0;...;n

jDj � 1j4
T1ðxÞ

1 � T2ðxÞ
: ð33Þ

Because T1ðxÞ; T2ðxÞ ! 0 as x ! 0; it implies that jDnj is bounded above and
below from zero for jxj sufficiently small. Due to (29) and boundedness of
Dn; ln=Sn converges to zero uniformly for x from some punctured vicinity of
origin. Then, we apply Cauchy’s criterion of uniform convergence to series
from (22). Estimates on Sn; boundedness of Dn; and inequalities analogous
to (27), (30)–(32) yield that the series in (22) converge absolutely and
uniformly in the neighborhood of zero. Therefore, DnðxÞ converges to some
DðxÞ: This convergence is uniform for x from some punctured vicinity of
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zero. jDðxÞj is bounded above and below from zero. Due to factorization
Fn

nðzÞ ¼ SnDn and Lemma 2.6, we have asymptotics (25) and consequently
(24). ]

Remark. Because D2ðzÞ is analytic in z ¼ 0 and D2ð0Þ ¼ 1; (22) and
(27)–(32) yield the inequalities: 04T1ðxÞ4Cjxj; 04T2ðxÞ4Cjxj:

3. THE PRESENCE OF A.C. COMPONENT

The main result of the article is

Theorem 3.1. Under the conditions of Theorem 2.1, the associated

measure sðyÞ has absolutely continuous component, whose essential support

is ½�p;p�:

Proof. For the systems with aðnÞj ¼
aj; j4n;
0; j > n

�
; we have formula (4)

pðnÞðzÞ ¼ exp �
1

4p

Z p

�p

eiy þ z
eiy � z

ln s0nðyÞ dy
� �

; ð34Þ

where pðnÞðzÞ ¼ limk!1 j
ðnÞ*
k ðzÞ ¼ jn

nðzÞ: Choosing z ¼ 0 and then z ¼ g ð0
5g5dÞ; we have

2gð1 þ gÞ
4pð1 � gÞ

Z p

�p

1 � cos y
1 þ g2 � 2g cos y

ln s0nðyÞ dy ¼ jjn

nðgÞj
*
n ð0Þð1þgÞ=ðg�1Þj; ð35Þ

where the right-hand side tends to some positive constant due to (24). Thus,
we obtain the uniform boundedness of

R p
�p

1�cos y
1þg2�2g cos y ln s0nðyÞ dy in n:

Now it suffices to use one argument that was applied to Sturm–Liouville
operators by Deift and Killip [1]. The measure snðyÞ converges weakly to
sðyÞ: We have the trivial inequality lnþt5t; where lnþt ¼ ln t if t > 1 and
equals to zero if 05t51: Because

R p
�p s

0
nðyÞ dy is bounded in n;R

½a;b� ln
þ s0nðyÞ dy is bounded as well, where ½a; b�}any segment that does

not contain zero. Therefore,
R
½a;b� ln

� s0nðyÞ dy is bounded uniformly in n;
where ln�t ¼ �ln t for 05t51 and is equal to zero for t > 1: Given any
compact C; such that jCj > 0; distð0;CÞ > 0; use Jensen’s inequality

ln� 1

jCj

Z
C
s0nðyÞ dy

� �
4

1

jCj

Z
C

ln� s0nðyÞ dy ð36Þ

to prove that snðCÞ5dðCÞ > 0 for any n: Because sn converges weakly to
s; sðCÞ5lim supn!1 snðCÞ > 0: If C is such that distð0;CÞ ¼ 0 and jCj > 0;
we can always find compact subset C1 that satisfies distð0;C1Þ > 0 and
jC1j > 0: For this subset C1; we can use the same argument. ]
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Remark. The rotation of the circle to the angle t changes the reflection
coefficients as follows #aan ¼ e�iðnþ1Þtan (it follows, for example, from the
continued fraction expansion of the associated Schur function, see [5]).
Therefore, we can change condition anþ1 � an 2 ‘2 in Theorem 3.1 to
eitanþ1 � an 2 ‘2 for some real t:

Remark. It is likely that condition an 2 ‘4 in Theorem 3.1 can be relaxed
to an ! 0:
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