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In this article, we consider the system of polynomials orthogonal on the unit circle.
It is proved that the conditions {a,} € £* and {a,.| —a,} € £* imposed on the
reflection parameters {a,} are sufficient for the associated measure to be Erdos
one. © 2002 Elsevier Science (USA)
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1. INTRODUCTION

Consider polynomials ¢,(z) = 2" + -+, o, > 0 orthogonal on the unit
circle with respect to some measure ¢(f) which has infinitely many growth
points [2]. This means

1 4 —
2 [ 0@0,Edo0) = 3,

where z = ¢, Define @n(z):‘/’;—(z). Then &,(z) satisfies the system of
difference equations

d)nJrl(Z) = Z@n(Z) - 6_1,,@:(2), @O(Z) =1,

(D
Dr1(2) = Di(2) — az®,(2),  Pp(2) =1,
where the reverse polynomials are defined as
D¥(z) ="z 7). )

The coefficients a, are called reflection (or Geronimus) parameters. It is not
difficult to show that |a,|<1 for all n=0,1,... (see [2]). Consider any
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measure p(0) on [—=m,m]. Assume that it has non-trivial absolutely
continuous component p,.(0). We say that the essential support of wu,, is
the whole interval [—=n, n] if for any measurable subset C with positive
Lebesgue measure (|C| > 0), we have the inequality u(C) > 0. Measures that
satisfy this condition are often called the Erdds measures [5]. In [2], the
following theorem was proved. We give its short version here.

THEOREM 1.1 (Geronimus [2]). The following statements are equivalent:

(a) The function In o’ is integrable. That is

/ " In 6’(0) d6 > —o0. 3)

n

(b) The series > -, |lan* converges.
(c) There exists a subsequence Q):’l‘r (z) bounded at least at one point inside
the unit disk.

Remark. It was also proved that if one of the conditions above holds,
then the limit lim, ., @¥*(z) = n(z) exists. The convergence is uniform
inside any disk |z]<r< 1. Function 7(z) is analytic and has no zeroes inside
the unit disk. What is more, the following representation holds (formula
(2.5) in [2]):

1 T 0
n(z) =exp{—ﬁ / ZO—Zm o' (0) dO}, Z<1. 4)

Assume that we are given a sequence of coefficients a,. The following
theorem is true.

THEOREM 1.2 (Geronimus [2]). An arbitrary choice of parameters ay,
subjected to the single condition

la,| <1 n=0,1,...)

determines the entire orthogonal set ®,(z) and the non-decreasing bounded
function o(0) with infinitely many growth points.

We are interested in the following question. What properties of {a,}
provide the inclusion of ¢ in the Erdés class? It follows from Theorem 1.1
that ¢ is an Erdés measure, if {a,} € ¢*> and |a,|<1,=0,1,... . Similar
results for different classes of parameters {a,} were obtained in [6,7]. The
subordinacy theory of [3] can also be effectively applied to this problem. In
the present paper, we use a new approach. For a class of sequences {a,}, we
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first establish an asymptotic formula for the polynomials ¢*(z) for z from
some real segment centered at zero. Then, we show that the asymptotics
obtained guarantees the inclusion of ¢ into the Erdds class.

2. ASYMPTOTICS OF ¢¥(2)

In this paragraph, we obtain asymptotics of ¢*(z) and @%*(z). Note that [2,
Formula (8.6)]

2 n—1
o
=11 00—l (5)
n k=0
Since {a,} € ¢*, this implies that

1 n—1
Op = Cp eXP{E Z |ak|2}5

k=0

where {c,} is a convergent sequence. Consequently, the asymptotics for
®¥(z) gives the asymptotic formula for

PE(2) = 0, DX (2). (6)

If z = 0, then the solution to the second equation of (1) is trivial, i.e., @¥(0)
=1, n=0,1,..., and we obtain the asymptotics for ¢*(0) from (6). In what
follows, we assume therefore that z#0. Before stating the main result, we
prove some auxiliary statements.

LemMma 2.1, Let lim,— o a, = 0 and {a,.1 — a,} € 2. Then, the series

o0

> [R@jaj:1) - laj] (7)

Jj=0

converges.

Proof. Observing that
2 2 2 -
lajr1 — a;I” = lajl” + la;|” — 2R(aa;41)

and taking the sum of these identities, we obtain

n n

2 2 2 =
> lan —aiF =Y lapa P+l — 2R(@a;:1).

= =0
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It follows that
n n
- 2 2 2 2
2 [R@a) — a1 = lanai P = laof’ =Y lajpn —ai’. 0
J=0 J=0
LEMMA 2.2. Let {®,(z)} be the sequence of the monic orthogonal

polynomials corresponding to a sequence of the Geronimus parameters
{an},>0. Then,

n—1
i) =1-z2Y  a;P,2), (8)
j=0
n—1 )
D,(x)=2"—2"" > az /i), )
j=0
n—1 ) n—1 ) j—1
G =1->_ aZ™ + > ad > az '), (10)
j=0 j=1 =0
n—1 n—2 n—1
G =1-Y aZ"+Y ¥ > aaeV,  n=12,.... (1D
j=0 j=0 I=j+1

Proof. Formula (8) follows from the second recurrence of (1):

P,(2) = P)(2) + i) — D)) + P3(2) — D) + -+ + Pi(2) — P4 (2)
n—1
=1-z Z ak(bk(z).
k=0

Now (9) can be obtained from (8) by the %-operation defined in (2). Finally,
(10) follows from (8) if we substitute (9) into it. Formula (11) is obtained
from (10) by the change of the order of summation. 1§

Denote

n—1
r,=1-— E ajzﬁl,
Jj=0

o0

gn = Anz § a_jzja

j=n+1

n—2 50
Iy = —gn1®)_4(2) — ( Z 512_1457(2)) ( Z ajzf>.
I=0 Jj=n
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In the next lemma, we obtain some useful formulas for @%(z).

LEMMA 2.3.  The following relations for @} (z) holds:

n—1
GO =rat la+ Y GIOFE), (12)
=0
D = D=1y — 1yt L — L+ 9u Dy (13)

Proof. Equation (12) follows from (11) if we use notations r,, /,, and g,,.
Equation (13) is the direct consequence of (12). 1

DEerFINITION.  For a sequence of complex numbers, we define

[1{xn Hlloo = sup |xal.
n=0

More generally, for any real positive p, we denote

o I/p
H{xa}ll, = (Z |xn|P> :
n=0

The following two lemmas establish some properties of the sequence {g,}.

LemMA 2.4.  The estimates

Il

g Hloo <IHand I3 — (14)

|2l

lgnbl < 2 (1)

hold.
Proof. Inequality (14) easily follows from the definition of g,. To prove

(15), use Cauchy’s inequality first,
0 .
g} < ll{an} s { > ajzf-"}
Jj=n+1

4
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The discrete version of Young’s inequality for the convolution [4, pp. 239-

240] states
o0
Jj=—00

Applying Young’s inequality to

<[yt p=1 (16)
p

with p = 4, we obtain that

o0
E L
a;z
Jj=n+1

We denote by C a positive constant whose value may change from one
formula to another.

<@z}l = =

4

[{an}lls- 0

LEMMA 2.5.  The following asymptotics is true:

n n
__Z 2
Zoj Rgj =1 ; @, + ,(2), (17)

where w,(z) tends to some w(z) uniformly for real z = x from some punctured
vicinity of zero.

Proof. The trivial identity x* = (x¥*! — x¥)/(x — 1) and the definition of
gn imply

n no & kg
E g;j = E ax™’ E @1 |
J=0 =0 T

Using the Abel transform, we have

i gj = Z ajaﬁl + 1 Z ajx —J Z (a1 — ak)x
Jj=0

k=j+2

Since {a,} € ¢* implies that lim,_ a, =0, we obtain by Lemma 2.1
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that
X 1 S
1 —x Z R(“J"/H)
j=0
X 1 2 X - - 2
= Dl =Y [R@a) — L]
X = X =

5.
— X

X n X o0
> o~ <|a0|2 D laj — aj|2> +
1 —x = 2(1 —x) =

To handle the second term, we use the elementary identity x~/ =
(x 7' —x77)/(x — 1). Now, we write

n - _
ZE{; a Z (a1 — ap)x*

j=0 k=j+2
n X —(—1) n+1 ¥ —(j—1) _©
:Za]x_l Z(aklfak)foaJ1 Z(aklfak)x
j=0 k=j+2 k=j+1
Zx_lsz b Z (ar1 — ax* —a; Z (ax—1 — apx*
k=j+2 k=j+1
+a0x_12(ak | —a)xt —a, _1 Z (ax-1 — ap)x". (18)

k=n+2

The last term of (18) tends to zero uniformly on compact subsets of (—1, 1),
since lim,_,~, a, = 0 and since the Taylor coefficients of the power series in
this term are in ¢*. Similarly, the Taylor series of the second term in (18)
converges uniformly on the compact subsets of (—1, 1). The first term in (18)
can be written as follows:

x—lzx (aj

aj-1(a; — a1). (19)
k=j+2 =l

Apply Cauchy’s inequality

" " 1/2 " 1/2
> < ( > |xj|2> ( > |yj|2> ,
j=1 j=1 j=1

with x; = a, a1 and y;=x7/ 3 ) (a1 — apxt, to the first term in
(19). x; € £* and y; € €* by discrete Young’s inequality. Therefore, the first
term of (19) converges uniformly near the origin. For the second one, we
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have

n n n
Z (aj—aj1)@j-1—a;+a;) = Z (aj—ajs1)(@j-1 —a;) + Z (aj—aj+1)a;.
Jj=1 j=1 j=1

The first series converges by Cauchy’s inequality. The real part of the second
one converges by Lemma 2.1. 1

Consider
n—1
Se=]] @+D (20)
=0

for real z = x from the small punctured vicinity of zero. S, is the solution of
the equation S, — S, =3S,9,, So = 1. The next lemma establishes the
asymptotics for |S,|.

LEMMA 2.6. |S,| admits the following asymptotics:

X n
Sul = exp <m > |aj|2) Vi), @1
j=0

where v,(x) tends to some positive vy (x).

Proof. From (20), we infer

n—1
1S, = exp{iR > In(l+ g_,)}.

=0

Use the Taylor expansion for logarithm In(1 +5) = s+ O(s%) as s - 0
Lemma 2.5 yields the asymptotics for Z ‘J?g ;. Boundedness of Z Ig]
follows from Lemma 2.4. 1

For % we have Eq. (12). Let us find @* in the following form &* = S,D,.
Then, the study of the sequence D, is reduced to the analysis of the equation
from the following lemma.

LEMMA 2.7.  We have the following equation for D,:

n—1
D_DQ+Z”“ —" +ZI(S Sl> (n=23,..),
J=3 r

j+1 n
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where the formula for 1, is
n—2 00 '
ln = _g}’l*]Sﬂ*Ianl - ( Z C_IIXIS[D[> ( Z ajx]>. (23)
=0 j=n

Proof.  Substituting the factorization @ = §,D, in (13) and using (20),
we obtain

Fpil — TV + L1 — 1
Dn+1 — Dn + n+1 TS,+ n+1 n.
n+1

Summing up these equations, we obtain (22) by the Abel transform. |
Now we are in the position to prove the main result of this section.

THEOREM 2.1. If the reflection parameters a, are such that |a,| <1, a, €
%, and a,,| — a, € £*, then we have the asymptotics

) 1 n—1
o) = exp{z(ltzz) > |a,~|2}kn(z), (24)
j=0

where k,(z) tends to some positive koo (z) uniformly for real z = x in some small
neighborhood of zero |x| < 0.

Proof. Let us establish the following asymptotics for @%(x). If |x|<d,
then

n—1
)] = exp{ﬁ > |a,|2}wn(x), (25)
=0

where w,(x) tends to some positive wn,(x) uniformly for real z = x, (Jx|<9),
and J is some small number that depends on ||{a,}|ls and [[{a@,+1 — a,},-
Once this formula is obtained, we can use (6) to prove (24). Consider
Eq. (22). Subtract unity from the both sides of (22). Let us show that

max |D; — 1|<Ti(x) + To(x) max |D; — 1 (26)
= n J= n
where 7i(x), T>(x) » 0 as x — 0. Indeed, estimate terms on the right-hand

side of (22). From Lemma 2.6, we have |S; (| > C > 0 for |x| small enough.
Therefore,

n—1

_ e
Tl — 7

<C Y aj| kP < Cll. (27)
J

=2 Sj+l

||
N}
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For 12/S3,
<C|g1| %] + Clao| |} Z lajl Il < Clx, (28)
Jj=2
because
S .
gl <lar| ™D lagl Il < Clxl.
j=2

The estimate on [,/S, from the right-hand side of (22) is

L
< | <Clgn-1||Dy-1]
n

.....

< Clx| max {Iajl}( +, max {|D; — 1|}) (29)

.....

The difference in the last term from the right-hand side of (22) can be written
as follows:

1 lig/

S; S S

Therefore, using formula (23) for /;, we get

5 i(5ms)

<4 + 4>, (30)

where

n—1
|
A :C<l+ _max_ {|D;- 1—1|}> lgj-111S;- 1|
..... =

1]

< C(l + max {IDj-1 — 1|}>||{gn}||2

C|x|2(l+ max {|D; - 1|}) (31)

.....
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The last inequality follows from (15). For 4,, we have

o[£ Earnn) (£ o)
< c(l + max 1D, - 1|}> > K > lalii > ( g g |x|"> |g,-|1.

,,,,, =

Here we used the asymptotics of S, established in Lemma 2.6. Apply the
generalized Cauchy’s inequality

00
> bl Il <50l s lallz3 550l
=3
with x; = g;, y; =¥/ Z[ o lail x|~ =x/ Zk—; lax| [x|F. Now it suffices to

use discrete Young’s inequality for { yj} {z;}, and (15) for {x;} to obtain the
estimate

A2<C|x|<1 + max {|D; - 1|}> (32)

.....

Note that lim,_ D>(x) = 1. Let

—1
Z /+1
=2

/+l

Ti(x) =Dy — 1| + 5,| T Ol max ;| + Clx|

and

Ir(x) = Clx| max |a;| + Clx|.
j=zn

From (27)—(32), we infer (26) with lim,_ 71(x) = 0, lim,_¢ 75(x) = 0. The
following estimate holds:

T
max |D; — 1< 1)

Jj=0,...n 1— Tz(x). (33)

Because Ti(x), T>(x) — 0 as x — 0, it implies that |D,| is bounded above and
below from zero for |x| sufficiently small. Due to (29) and boundedness of
D,, 1, /S, converges to zero uniformly for x from some punctured vicinity of
origin. Then, we apply Cauchy’s criterion of uniform convergence to series
from (22). Estimates on S,, boundedness of D,, and inequalities analogous
to (27), (30)—(32) yield that the series in (22) converge absolutely and
uniformly in the neighborhood of zero. Therefore, D,(x) converges to some
D(x). This convergence is uniform for x from some punctured vicinity of
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zero. |D(x)| is bounded above and below from zero. Due to factorization
@*(z) = S,D, and Lemma 2.6, we have asymptotics (25) and consequently
24). 1

Remark. Because D,(z) is analytic in z=0 and D,(0) =1, (22) and
(27)—(32) yield the inequalities: 0< T1(x) < Clx|, 0< Th(x) < Clx|.

3. THE PRESENCE OF A.C. COMPONENT

The main result of the article is

THEOREM 3.1. Under the conditions of Theorem 2.1, the associated
measure o(0) has absolutely continuous component, whose essential support
is [-m, 7).

Proof. For the systems with a(") {aj > IS , we have formula (4)

0, j>n
@ 1 n 10 +z
7M(z) = expd —— “Ing(0)d0 (34)
47 r el()

where 7 (z) = limj_ (Pzn)*(z) = ¢*(z). Choosing z=0 and then z=17 (0
<y<0), we have

291 +y) [T 1 —cosd

In o’ (0)d0 = X 0)I+/G=D 5
=) | 1597 = 2yc0sa OO d0 = 1250)0: ©) L G3)

where the right-hand side tends to some positive constant due to (24). Thus,
we obtain the uniform boundedness of ffn%ln a (0)d0 in n.
Now it suffices to use one argument that was applied to Sturm-Liouville
operators by Deift and Killip [1]. The measure ,(0) converges weakly to
a(0). We have the trivial inequality In*z<¢, where In"¢ =In¢ if > 1 and
equals to zero if 0<r<l. Because [* " ¢/ (0)df is bounded in n,
f In" ¢/ (0)d0 is bounded as well, where [a bl—any segment that does
not contain zero. Therefore, f 0] In~ ¢/(0) d is bounded uniformly in #,
where In"¢t = —In¢ for 0<z<1 and is equal to zero for 7> 1. Given any
compact C, such that |C| >0, dist(0,C) > 0, use Jensen’s inequality

(1
In {E/U(Q)dﬁ} 6 /ln &(0) do (36)

to prove that ¢,(C)=>d(C) >0 for any n. Because g, converges weakly to
o, a(C)=limsup,_, ., 6,(C)> 0. If C is such that dist#(0,C) = 0 and |C| >0,
we can always find compact subset C; that satisfies dist(0,C;) >0 and
|Cy| > 0. For this subset Cy, we can use the same argument. 1
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Remark. The rotation of the circle to the angle t changes the reflection
coefficients as follows a, = e "*D7g, (it follows, for example, from the
continued fraction expansion of the associated Schur function, see [5]).
Therefore, we can change condition @, — a, € £ in Theorem 3.1 to
e"a,.1 — a, € £* for some real .

Remark. 1t is likely that condition a, € £* in Theorem 3.1 can be relaxed
to a, — 0.
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